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Abstract. Existing algorithms for person re-identification hardly mod-
el query variations across non-overlapping cameras. In this paper, we
propose a query based adaptive re-ranking method to address this im-
portant issue. In our work, negative image pairs can be easily generated
for each query under non-overlapping cameras. To infer query variations
across cameras, nearest neighbors of the query positive match under two
camera views are approximated and selected from positive matches in
the training set. Locality preserving projections (LPP) are employed to
ensure that each feature vector under one camera shares similar neigh-
borhood structure with the corresponding positive match. Using existing
re-identification algorithms as base score function, the optimal adaptive
model is learnt by least-square regression with manifold regularization.
Experimental results show that the proposed method can improve the
ranking performance and outperforms other adaptive methods.

1 Introduction

The task of person re-identification is to re-identify a person when she/he dis-
appears from the field of view of a camera and appears in another. The problem
is very challenging due to non-trivial variations of viewpoint, illumination con-
dition, human pose, etc. Existing methods solve these challenges by extracting
features robust to these variations [1–10] or using label information to train dis-
criminative models [11–17]. Since there are limited labeled images for each per-
son and the query person who needs to be re-identified is usually not contained
in the training set, most discriminative methods [11–16] assume all individu-
als share an unified model for identification. Based on this assumption, these
methods generate matched (positive) and unmatched (negative) image pairs by
limited person labels to train a score function. However, the learnt generic model
may not be optimal for each query image, and consequently the re-identification
performance is often not satisfactory.

To learn a matching function specific to each query image, Liu et al. [18]
proposed an unsupervised approach to on-the-fly feature importance mining by
person appearance attributes for re-identification. Based on manifold ranking,
the score of the probe image is propagated to the gallery for performance im-
provement in [19]. Given the assumption that the transition time across cameras
is available to prune the candidate set, Li et al. [20] proposed to learn an adaptive
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metric by selecting and re-weighting the training data according to the query
and pruned candidates. Using a different approach, in [21], feature vectors of
a query-gallery image pair were first projected to a locally aligned space and
then matched by specific local metrics. For post-rank optimization, weak neg-
atives and strong negatives are manually selected from the gallery set to train
an adaptive classification function for each query image in [22]. It was shown
that the selected weak negatives and strong negatives can help improve the re-
identification performance remarkably, but the process of manual labeling is still
costly, especially when the number of query images becomes large.

In this paper, we propose a novel re-ranking method without using manually
labeled information for the query data. Although negative image pairs can be
easily generated for each query under non-overlapping cameras, it is more diffi-
cult and important to infer the query based positive information across cameras.
To model query variations, positive image pairs in the training set are select-
ed as nearest neighbors of the query positive match under two cameras. Since
the query match is unknown, such nearest neighbors cannot be computed di-
rectly. Thus, we propose to approximate the neighborhood of the query match
by employing Locality Preserving Projections (LPP) [23] to ensure that each
image under the camera of the query shares the same neighborhood with the
corresponding positive image pair across two cameras. Based on the available
negative and estimated positive information for the query, the optimal adaptive
re-ranking model is learnt by least-square regression with manifold regularization
for the smoothness of the decision function.

Our contributions are summarized as follows:

1. We propose a novel query variation inference method to select nearest neigh-
bors of the query match under two cameras based on images under one cam-
era. Positive image pairs under two cameras in the training set are used to
construct the adjacency graph for the training images under the camera of
the query. A locality preserving mapping is learnt to preserve the neigh-
borhood structure, so that nearest neighbors of the query match can be
determined by the query image. Thus, query variations across cameras can
be modeled by the positive image pairs in the training set corresponding to
nearest neighbors of the query image.

2. We develop a new Query based Adaptive Re-Ranking (QARR) algorithm
to improve the ranking performance of existing re-identification methods.
Given a (generic) base score function, we learn a regression based adaptive
re-ranking model by negative image pairs generated under non-overlapping
cameras and the query match estimated by modeling query variations. To
ensure the smoothness of the adaptive score function over the query-gallery
image pairs, a manifold regularization term is incorporated in the objective
function to learn the optimal QARR model.

We will first briefly review related work in Sec. 2. Then we elaborate on our
proposed method in Sec. 3. Experimental results are given in Sec. 4. Finally,
Sec. 5 concludes the paper.
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2 Related Work

[24] proposed a descriptive and discriminative classification model for person
re-identification. Given a specific query, all the images are ranked by appear-
ance features of region covariance descriptors. After that, a human operator is
assigned to check whether the searched person has a high rank. If not, a dis-
criminative model is learnt for re-ranking under the assumption that there are
multiple frames for the query under a camera. While it was shown that this query
based re-ranking model could achieve better results than the generic models, the
method did not model query variations across non-overlapping cameras.

Besides person re-identification, many adaptive re-ranking algorithms [25–29]
have been developed for image retrieval. Most of these methods [25–28] first rank
a query image by key word features and then re-rank the text-based search results
by adaptive visual similarity measure. For content-based image retrieval [29],
initial ranked lists are first determined by comparing the similarities between
visual features and then images are re-ranked based on the similarities of their
ranked lists as contextual information. While these methods are designed for
image retrieval, they do not take advantage of the special characteristics in
person re-identification under non-overlapping cameras.

Domain adaptation [30] is one of the research areas related to this paper. If
we consider the training data as the source domain, the query image and the
gallery set as the target domain, domain adaptation techniques can be employed
to learn an adaptive classification model. Without any label information in the
target domain, the unsupervised domain adaptation methods [31, 32] aim at
aligning the marginal distributions under the assumption that the conditional
probabilities are equal with each other in the source and target domain. Since
the equal conditional probability assumption may not be valid, adaptive learning
methods [33, 34] make use of a small amount of labeled data in the target domain
to improve the recognition performance. Nevertheless, such label information is
not available in query based learning for person re-identification, hence existing
adaptive learning methods cannot be applied directly.

3 Proposed Method

We consider the re-identification task for images from a pair of cameras a and b.
Denote feature vectors of images under cameras a and b as xa

i and x b
j , respective-

ly. As indicated in [15], the absolute difference space exhibits certain advantages
over the common difference space. Hence we use the Absolute Difference Vector
(ADV) z ij as feature representation for each image pair:

z ij = (|xa
i (1)− x b

j(1)|, · · · , |xa
i (d)− x b

j(d)|, · · · , |xa
i (D)− x b

j(D)|)T (1)

where x (d) is the d-th element of feature vector x and D is the dimension
of x . Let the training data be xa

i under camera a and x b
j under camera b.

With corresponding person labels yai and ybj for training, positive and negative
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ADVs can be generated and denoted by z+
ij for yai = ybj and z−

mn for yam ̸= ybn,
respectively. Without loss of generality, suppose the query image come from
camera a with feature vector xa

q . Let feature vector for gallery image g under

camera b be x b
g. Since the same person cannot be presented at the same instant

under different non-overlapping cameras a and b, negative ADVs z qg− can be
obtained for each xa

q . Therefore, the key problem is to infer information about the
positive ADV z qg+ for query variation modeling across cameras. In Sec. 3.1, we
present a query variations inference method. Based on the inferred information
for query variations, an adaptive re-ranking model is reported in Sec. 3.2.

3.1 Cross-Cameras Query Variation Inference

Let the person image in the gallery set sharing the same identity with xa
q be x b

g+ .
The corresponding positive ADV for the query is z qg+ . With the positive ADVs
z+
ij in the training set, we propose to select some z+

ij such that the distance

between z+
ij and z qg+ is small. According to (1), the l1 distance between two

ADVs z+
ij and z qg+ is given by the following equation:

∥z qg+ − z+
ij∥ =

D∑
d=1

∣∣∣|xa
q (d)− x b

g+(d)| − |xa
i (d)− x b

j(d)|
∣∣∣ (2)

If (xa
q (d)− x b

g+(d))(xa
i (d)− x b

j(d)) < 0, then the element-wise difference on the

right hand side of (2) becomes∣∣∣|xa
q (d)− x b

g+(d)| − |xa
i (d)− x b

j(d)|
∣∣∣

=|(xa
q (d) + xa

i (d))− (x b
g+(d) + x b

j(d))|
(3)

Since the variations between non-overlapping cameras a and b can be large, the
right hand side of (3) is a large number. In this case, we cannot obtain positive
ADVs z+

ij from the training data, which are close to the positive ADV z qg+ for

the query. This implies that, in order to have small distance between z+
ij and

z qg+ , it is necessary to have (xa
q (d)− x b

g+(d))(xa
i (d)− x b

j(d)) ≥ 0, which means∣∣∣|xa
q (d)− x b

g+(d)| − |xa
i (d)− x b

j(d)|
∣∣∣

=|(xa
q (d)− xa

i (d)) + (x b
j(d)− x b

g+(d))|

≤|xa
q (d)− xa

i (d)|+ |x b
j(d)− x b

g+(d)|

(4)

According to (4), we have an upper bound for ∥z qg+ − z+
ij∥, i.e.

∥z qg+ − z+
ij∥ ≤ ∥xa

q − xa
i ∥+ ∥x b

j − x b
g+∥ (5)

By (5), it is reasonable to see that if xa
i is close to xa

q and x b
j close to x b

g+ for

yai = ybj , the distance between z+
ij in the training set and z qg+ for the query is
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small. Therefore, we can obtain the information about the positive ADV z qg+

by the intersection of the neighborhood of xa
q and the one of x b

g+ .

Although the feature vector x b
g+ under camera b corresponding to the query

under camera a is unknown, we can select the corresponding positive ADVs from
the training data by the feature vector of the query xa

q . Since xa
q and x b

g+ are
feature vectors for the same person under different camera views, they must be
related and it is reasonable to assume that x b

g+ can be obtained by a mapping

Φ on xa
q , i.e., x

b
g+ = Φ(xa

q ). Although we may not be able to determine such Φ
due to limited size of available training data, we make use of this assumption
as follows. Applying Φ on xa

i for yai = ybj , we get x b
j = Φ(xa

i ). Therefore, the
second term on the right hand side of (5) becomes

∥x b
j − x b

g+∥ = ∥Φ(xa
i )− Φ(xa

q )∥ (6)

If Φ is a continuously differentiable function, the right hand side of (6) is bounded
by the following equation according to mean value theorem [35],

∥Φ(xa
i )− Φ(xa

q )∥ ≤ ∥J (Φ)∥∥xa
i − xa

q∥ (7)

where J denotes the Jacobian matrix of all first-order partial derivatives of
mapping function Φ. With (6) (7), the inequality (5) becomes

∥z qg+ − z+
ij∥ ≤ (1 + ∥J (Φ)∥)∥xa

q − xa
i ∥ (8)

Therefore, if xa
i is a neighbor of xa

q , the positive ADV z+
ij in the training set is

a neighbor of z qg+ for the query. This means the neighborhood of the positive
ADV z qg+ can be determined by the neighborhood of the feature vector xa

q .
According to (8), the upper bound of the distance between two ADVs can

be determined by the distance between two feature vectors xa
q and xa

i under
the same camera. Thus, we propose to construct the neighborhood of the query
image pair by the neighborhood of the query image. Although it is plausible to
directly select the nearest neighbors of the query image, we need to consider that
the neighborhood structures are different in the image pair and image spaces.
Thus, we propose to employ Locality Preserving Projections (LPP) [23] to align
such differences by learning a projection matrix P .

For each feature vector xa
i under camera a in the training set, we compute

the corresponding positive ADV as

z+
i =

1

N+
i

∑
yb
j=ya

i

z+
ij (9)

where N+
i is the number of positive matches for xa

i . To construct the weight
matrix A, k nearest neighbors are selected for each positive ADV z+

i . Then, the
simple-minded weighting scheme is employed to determine the weight between
z+
i and z+

i′ . In other words, if z+
i is in the neighborhood of z+

i′ , or z+
i′ is in

the neighborhood of z+
i , Aii′ = 1; otherwise, Aii′ = 0. Thus, the neighborhood
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Algorithm 1 Cross-Camera Query Variation Inference

Input: Feature vectors xa
i under camera a and positive ADVs z+

ij in the training
set, query feature vector xa

q , projection dimension p, neighborhood param-
eters k for LPP and kq for query based positive ADV;

1: Compute positive ADV z+
i by (9) for each xa

i ;

2: Construct k nearest neighbors for each z+
i to obtain weight matrix A;

3: Solve optimization problem (10) to obtain projection P with dimension p;

4: Compute the distances between the projected feature vector PTxa
q for the

query and the projected feature vectors PTxa
i for the training data;

5: Select kq nearest neighbors PTx+
i1
, · · · , PTx+

ikq
of PTxa

q ;

6: Calculate the estimation z̃ qg+ for the query positive ADV by (11);

Output: Estimated query positive ADV z̃ qg+ .

information for the positive ADVs z+
i is enclosed in the weight matrix A. We

would like to learn a projection matrix such that the indexes of the neighbors of
xa
i are nearly the same as those of z+

i . We use A to define the objective function
for feature vectors xa

i as follows,

min
e, s.t.

∑
i,i′ Aii′ (e

T xa
i )

2=1

∑
i,i′

Aii′(e
Txa

i − eTxa
i′)

2
(10)

where e denotes the column vector in P . The optimization problem (10) can
be solved by calculating the eigenvectors and eigenvalues for the generalized
eigenvalue problem. The projection matrix P is obtained by the eigenvectors
corresponding to the first p eigenvalues (details can be referred to [23]).

Based on the above analysis, we infer the cross-camera query variations by
selecting kq nearest neighbors PTx+

i1
, · · · , PTx+

ikq
of PTxa

q from the training

data. The corresponding positive ADVs z+
i1
, · · · , z+

ikq
in the training set are used

to represent z qg+ for the query. Since the assumption that x b
j = Φ(xa

i ) may not

be satisfied for all the selected positive ADVs z+
i1
, · · · , z+

ikq
, we compute the

mean of them for the estimation of z qg+ , i.e.,

z̃ qg+ =
1

kq
(z+

i1
+ · · ·+ z+

ikq
) (11)

Algorithm 1 lists the procedure for cross-camera query variation inference.

3.2 Adaptive Regression with Graph Propagation for Re-Ranking

Given a (generic) base score function f for feature vectors xa
q of the query and

x b
g of the gallery image, we learn an adaptive function fq specific to the query.



Query Based Adaptive Re-Ranking for Person Re-Identification 7

Inspired by adaptive learning methods [33, 34] for domain adaptation, we define

fq(x
a
q ,x

b
g) = θf(xa

q ,x
b
g) +wT z qg (12)

where z qg denote the ADV between feature vectors xa
q of the query and x b

g

of a gallery image as defined in (1), θ is a positive parameter to measure the
importance of the base score function f and w is the perturbation weight vector
adapted for the query.

With the estimated query positive ADV z̃ qg+ and negative ADVs z qg− gen-
erated under non-overlapping cameras, we formulate the objective function in
a least-square regression framework. Since the score of the positive image pair
must be larger than the negative ones, we set fq(x

a
q ,x

b
g+) − fq(x

a
q ,x

b
g−) ≈ 1.

This way, we can formulate the following optimization problem:

min
θ,w

1

N−
q

∑
g−

[wT (z̃ qg+ − z qg−) + θ(s̃qg+ − sqg−)− 1]2 + λwTw + µθ2 (13)

where s̃qg+ = 1
kq

∑kq

t=1
1

N+
i

∑
yb
j=ya

it

f(xa
it
,x b

j), sqg− = f(xa
q ,x

b
g−), N−

q is the

number of negative image pairs for the query, λ and µ are positive parameters
for the regularization terms of w and θ, respectively. To solve the optimization
problem (13), we convert it to a matrix form as,

min
w̄

w̄TMw̄ − 2w̄Tm + w̄TMrw̄

w̄ =

(
w
θ

)
,M =

1

Nq−

∑
g−

(
z̃ qg+ − z qg−

s̃qg+ − sqg−

)(
z̃ qg+ − z qg−

s̃qg+ − sqg−

)T

,

m =
1

Nq−

∑
g−

(
z̃ qg+ − z qg−

s̃qg+ − sqg−

)
,Mr =

(
λI 0
0 µ

) (14)

where I is the unit matrix with the same dimension as w .
Note that, if two ADVs z qg and z qg′ are close to each other, they must have

similar matching scores. Thus, we employ manifold regularization [36] in our
adaptive re-ranking method. A weight matrix Aq is constructed for the ADVs
z q1, · · · , z qNG , z q(NG+1), where NG is the number of images in the gallery set
and z q(NG+1) = z̃ qg+ . For each query-gallery ADV z qg, km nearest neighbors
are selected and the weights are determined by the simple-minded weighting
scheme to avoid parameter selection in heat kernel as described in the previous
section. Then, the manifold based regularization term for the continuity of the
query score function fq is given as follows,

1

(NG + 1)2

NG+1∑
g=1

NG+1∑
g′=1

Aqgg′ [(wT z qg + θsqg)− (wT z qg′ + θsqg′)]2 (15)

where sq(NG+1) = s̃qg+ . Denote the column concatenation of z qg and sqg by z̄ qg,
and Zq = (z̄ q1, · · · , z̄ q(NG+1)), respectively. Adding the regularization term (15)
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Algorithm 2 Training Query Score Function

Input: ADVs z qg for query-gallery image pairs, estimated query positive AD-
V z̃ qg+ , negative ADVs z qg− under non-overlapping cameras, base scores
s̃qg+ , sq1, · · · , sqNG

, parameters λ, µ, η, km;

1: Compute M,Mr,m by (14);

2: Construct km nearest neighbors for each z qg to obtain weight matrix Aq;

3: Calculate the normalized Laplacian matrix Lq by (16);

4: Obtained the optimal augmented weight vector w̄∗ by (17);

Output: Optimal weights w∗ and θ∗ for the query score function fq.

(in matrix form) into (14), the optimization problem becomes

min
w̄

w̄TMw̄ − 2w̄Tm + w̄TMrw̄ + w̄TZqLqZ
T
q w̄ ,

s.t. Lq =
η(Dq −Aq)

(NG + 1)2

(16)

where η is a positive parameter for the manifold based regularization term and
Dq is a diagonal matrix with diagonal element Dqgg =

∑
g′ Aqgg′ . The optimiza-

tion problem (16) can be solved by setting the first derivative of the objective
function to zero. The solution is given by

w̄∗ = (M +Mr + ZqLqZ
T
q )

−1m (17)

According to the definition of w̄ in (14), the optimal w∗ and θ∗ can be obtained
to determine the query score function defined in (12).

Algorithm 2 summarizes the algorithmic procedure for training the Query
based Adaptive Re-Ranking (QARR) model.

4 Experiments

We first introduce the datasets and settings for experiments. Then we present
the results on query variation inference across cameras in Sec. 4.2. Based on
the inferred query variations, we demonstrate that our method can improve the
ranking performance for person re-identification in Sec. 4.3. Finally, we compare
our method with existing adaptive re-identification algorithms in Sec. 4.4.

4.1 Datasets and Settings

Two publicly available datasets, namely VIPeR1 [37] and CUHK2 [21], are used
for experiments. Example images in these two datasets are shown in Fig. 1 and

1 http://soe.ucsc.edu/~dgray/VIPeR.v1.0.zip
2 http://www.ee.cuhk.edu.hk/~xgwang/CUHK_identification.html
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Fig. 1. Examples of kq = 5 nearest neighbors obtained by Algorithm 1 on VIPeR [37]
dataset (better viewed in color).

Fig. 2, respectively. VIPeR is a re-identification dataset containing 632 person
image pairs captured by two cameras outdoor. In this dataset, 632 image pairs
are randomly separated into half for training and the other half for testing.
CUHK dataset contains five pairs of camera views. Under each camera view,
there are two images for each person. Following the single shot setting in [21],
images from camera pair one with 971 persons are used for experiments. For
this dataset, 971 persons are randomly split into 485 for training and 486 for
testing. For the testing data in VIPeR or CUHK, the evaluation is performed
by searching the 316 or 486 persons in one camera view from another view.
Ten negative image pairs are randomly generated for each query image. These
experiments were performed ten times and the average results are reported. For
feature representation, we follow [11, 12, 15] and divide a person image into 6
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Fig. 2. Examples of kq = 5 nearest neighbors obtained by Algorithm 1 on CUHK [21]
dataset (better viewed in color).

horizontal stripes and compute the RGB, YCbCr, HSV color features and two
types of texture features extracted by Schmid and Gabor filters on each stripe.

In our experiments, we implemented three state-of-the-art algorithms, name-
ly Ranking Support Vector Machines (RSVM) [12], Relaxed Pairwise Metric
Learning (RPML) [14] and Relative Distance Comparison (RDC) [15], and use
each as the base score function. The parameter C in RSVM is empirically set as
1, while the PCA dimension in RPML is set as 80 for robust performance. To
avoid singular matrix problem, we perform PCA with dimension 80 before learn-
ing the projection matrix P in our method. The parameters for neighborhood
construction are set as k = kq = km = 5. For the regularization parameters,
if λ is too large, the norm of the adaptive weight w will be very small. In this
case, the query score function fq will be very close to the base score function f .
On the other hand, if λ is too small, the norm of w will be very large, which
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implies the model could be over-fitted and the base score function hardly affects
the decision for the query. Similar analysis can be applied to parameter µ for
the weight of the base score function. Thus, we empirically set λ = 10−2 and
µ = 10−3. Since η is the parameter to measure the importance of the manifold
based regularization term, we set it with a larger number as η = 10−1.

4.2 Results on Cross-Camera Query Variation Inference

In this section, we first evaluate whether the proposed cross-camera query vari-
ation inference method can discover the true neighborhood of the positive ADV
z qg+ . For evaluation, kq = 5 nearest neighbors of z qg+ are selected from the posi-
tive ADVs in the training set as ground truth. We calculate the intersection ratio
given by the number of elements in the intersection set of the true neighborhood
and the one constructed by Algorithm 1 divided by kq = 5. The intersection
ratios averaged over all the query images are 59.18% on VIPeR dataset and
58.89% on CUHK dataset, respectively. This means that on average nearly 3
out of 5 nearest neighbors are correctly detected by Algorithm 1 for the query
positive ADV z qg+ . Since the majority of the detected nearest neighbors are in
the true neighborhood of z qg+ , the inferred query variations can help improve
the re-identification performance across cameras.

To visualize the query based positive inference results, we show the true
nearest neighbors and the ones selected by Algorithm 1 for three query images
under camera a in Fig. 1 for VIPeR and Fig. 2 for CUHK dataset. The image
pairs in the intersection of the nearest neighbor sets are marked in the same color.
From the first to the fourth rows in Fig. 1 and Fig. 2, we can see that 3 nearest
neighbors selected by Algorithm 1 are in the true neighborhood of the query
match, which is approximately equal to the average intersection ratios. Since
we do not know which nearest neighbors are correctly selected, we compute the
mean of them by (11) to reduce the error caused by incorrect selection. It is
also possible that the intersection of the selected nearest neighbors and the true
ones is an empty set as illustrated in the last two rows in Fig. 1 and Fig. 2.
Although the order of the positive image pairs in the training set computed by
Algorithm 1 may not be the same as the true one, the selected image pairs still
look similar to the query ones, e.g., similar jackets, pants, and/or pose under the
same camera. Therefore, the selected positive ADVs can still help improve the
ranking performance, which will be shown in the following subsection.

4.3 Results on Query Based Adaptive Re-Ranking

The CMC curves of the proposed Query based Adaptive Re-Ranking (QARR)
method are compared with those of RSVM, RPML and RDC in Fig. 3(a)-3(c)
on VIPeR and Fig. 4(a)-4(c) on CUHK dataset. From these figures, we can
see that our method outperform RSVM, RPML and RDC on both datasets by
learning a score function specific to the query. Results in Fig. 3 show that the
rank one accuracy of our method using RSVM, RPML or RDC as the base
score function is over 5% higher than that without adaptive learning on VIPeR
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dataset. Interestingly, although the RPML should be a better score function
compared with RSVM and RDC on these two datasets, our method can still
achieve higher matching accuracies with different numbers of top ranks based
on it. In other words, regardless of the base score function, our adaptive learning
method can improve the re-identification performance robustly.

(a) (b) (c)

Fig. 3. CMC curves of our method using (a) RSVM [12], (b) RPML [14] or (c) RDC [15]
as base score function on VIPeR [37] dataset with 316 image pairs for training.

(a) (b) (c)

Fig. 4. CMC curves of our method using (a) RSVM [12], (b) RPML [14] or (c) RDC [15]
as base score function on CUHK [21] dataset with 485 image pairs for training.

Note that the proposed method implicitly assumes that there are positive
image pairs in the training set which are similar to the query positive match.
When the number of training image pairs increases, this assumption will more
easily satisfied and we should observe better improvement of the ranking perfor-
mance. To verify this argument, we increase the number of persons for training
from 316 to 500 on VIPeR and 485 to 700 on CUHK dataset. The CMC curves
on VIPeR dataset in Fig. 5 show that the rank one accuracy improvement by
our method is increased from 9.60% to 14.70% using base score function RSVM,
from 5.27% to 6.06% using RPML and from 9.10% to 15.94% using RDC. Simi-
lar statistics can be observed on CUHK dataset in Fig. 6. These results confirm
that our method can achieve better improvement with more training data.
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(a) (b) (c)

Fig. 5. CMC curves of our method using (a) RSVM [12], (b) RPML [14] or (c) RDC [15]
as base score function on VIPeR [37] dataset with 500 image pairs for training.

(a) (b) (c)

Fig. 6. CMC curves of our method using (a) RSVM [12], (b) RPML [14] or (c) RDC [15]
as base score function on CUHK [21] dataset with 700 image pairs for training.

4.4 Comparison with Existing Adaptive Re-Ranking Methods

In this section, we compare our method with other query based re-identification
algorithms namely, Prototype-Specific Feature Importance (PSFI) [18], Individual-
Specific Feature Importance (ISFI) [18], Manifold Ranking with Normalised
graph Laplacian (MRNL) [19] and Manifold Ranking with Unnormalised iterat-
ed graph Laplacian (MRUL) [19]. The results are copied from their papers and
recorded in Table 1 for comparison. It is shown in Table 1 that all the query
based re-ranking methods can achieve higher matching accuracy by learning a
score function specific to the query. Comparing our method with PSFI and ISFI,
we can see that our method remarkably outperforms them using either RSVM
or RDC as the base score function. The rank one accuracy of our method is over
6% higher than those of the PSFI and ISFI based on RSVM and over 4% higher
than them based on RDC. Furthermore, our method can also outperforms the
manifold ranking algorithms, MRNL and MRUL, by modeling the inter-camera
variations specific to the probe image.
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Table 1. Top rank matching accuracy (%) on VIPeR

PPPPPPPMethod
Rank

1 5 10 15 20

QARR-RSVM 22.53 47.59 62.20 70.85 75.82
MRNL-RSVM [19] 19.27 42.41 55.00 63.86 70.06
MRUL-RSVM [19] 19.34 42.47 55.51 64.11 70.44
PSFI-RSVM [18] 15.76 38.70 51.36 n/a 66.84
ISFI-RSVM [18] 16.46 38.76 51.36 n/a 67.18
RSVM [12] 12.93 31.46 43.91 53.05 59.64

QARR-RDC 21.15 46.46 60.47 68.94 74.84
MRNL-RSVM [19] 19.37 42.78 54.78 63.77 69.62
MRUL-RSVM [19] 18.45 41.74 53.67 62.72 69.27
PSFI-RDC [18] 16.99 38.10 52.37 n/a 66.84
ISFI-RDC [18] 17.12 38.96 52.94 n/a 67.34
RDC [15] 12.15 27.78 38.94 47.36 54.46

5 Conclusions

In this paper, we have developed a Query based Adaptive Re-Ranking (QAR-
R) method to learn a discriminative model specific to the query data. Negative
image pairs can be generated for the query under non-overlapping cameras, while
positive information about the query across cameras is inferred by approximat-
ing the neighborhood of the query positive match. By analyzing the distance
between two positive ADVs, we show that such neighborhood can be deter-
mined by the nearest neighbors of the query feature vector. Locality Preserving
Projection (LPP) [23] is employed to ensure the similarity of the neighborhood
structures between the ADV space and feature vector space under the camera
of the query. Given a base score function, a regression based adaptive re-ranking
model is learnt by propagating the negative and estimated positive information
about the query match to all the query-gallery image pairs.

Experimental results show that the majority of the nearest neighbors select-
ed by our method are in the true neighborhood of the query positive match.
Thus, the QARR method can improve the ranking performance of existing
re-identification methods by using the positive matching information of the
query across cameras. Compared with other adaptive methods for person re-
identification, our method achieves the best results on VIPeR dataset.
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